The Conformation of Borazole Derivatives

By M. GOLDSTEIN and E. F. MOONEY*

(The Northern Polytechnic, Holloway Road, London, N.7)

In the extension of our studies of phenyl substituted borazoles,1 we have now examined the infrared spectra of the analogous series of N-triaryl-(HBNAr)₃ (I) and B-triaryl-borazoles (ArBNH)₃ (II) respectively. Compounds (II) in dilute carbon tetrachloride solution are all typified by the presence of a very strong, single, sharp N-H stretching mode in the region 3433—3440 cm.-1 We have previously suggested² that the presence of such an N-H stretching band indicates polarization of the N-H bond resulting from N→B p_{π} — p_{π} bonding. We can therefore suggest that (II), like the analogous B-triaryl-N-trimethylborazoles, have considerable B-N double-bond character.

The ring deformation modes of B-triaryl-N-trialkylborazoles were easily identified in the range 728 \pm 8 cm. -1, and the same vibrational mode is now observed in the spectra of (II) at approximately 750 cm. -1 We failed to observe this ring deformation mode in B-trimethyl-N-triarylborazoles, and suggested that this indicated that B-N π -bonding is weak.

In the present work we find that compounds (I) also do not exhibit these B-N deformations, and in addition have observed multiplicity of the B-H stretching modes, e.g., in (I) (Ar = Ph) four ν B-H

bands are observed at 2602, 2565, 2519, and 2508 cm.⁻¹ The frequencies and relative intensities of these absorption bands are invariant with dilution in carbon tetrachloride. There are thus two sets of B-H stretching modes, in each case the higher frequency, and weaker, band arising from the vibration involving the ¹⁰B isotope, thus:—

$$\left\{ \begin{smallmatrix} ^{10}{\rm B-H} & 2602 \\ ^{11}{\rm B-H} & 2565 \end{smallmatrix} \right\} {\rm and} \left\{ \begin{smallmatrix} ^{10}{\rm B-H} & 2519 \\ ^{11}{\rm B-H} & 2508 \text{ cm.}^{-1} \end{smallmatrix} \right\}$$

The presence of two sets of infrared-active B-H stretching modes instead of one, as required for D_{3h} symmetry, indicates that in each case the B-substituents and the ring are not coplanar. Gupta and Porter,³ in a study of solid boroxine (HBO)₃ (III) found two fairly intense B-H stretching modes in the infrared spectrum and therefore suggested that a similar situation occurred in solid (III).

We therefore suggest that the absence of the infrared-active B–N ring deformation mode in the 730 cm.⁻¹ region may be considered as being diagnostic of the non-coplanarity of the borazole ring and *B*-substituents.

(Received, January 14th, 1966; Com. 028.)

^{*} Present address (E.F.M.) University of Birmingham, Edgbaston, Birmingham, 15.

¹ J. E. Burch, W. Gerrard, M. Goldstein, E. F. Mooney, D. E. Pratt, and H. A. Willis, Spectrochim. Acta, 1963, 19, 889

² I. M. Butcher, W. Gerrard, E. F. Mooney, R. A. Rothenbury, and H. A. Willis, Spectrochim Acta, 1962, 18, 1487. ³ S. K. Gupta and R. F. Porter, J. Chem. Phys., 1963, 67, 1286.